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Spontaneous oscillations in a nonlinear delayed-feedback shunting model of the pupil light reflex
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We analyze spontaneous oscillations in a second-order delayed-feedback shunting model of the pupil light
reflex. This model describes in a simple fashion the nonlinear effects of both the iris and retinal parts of the
reflex pathway. In the case of smooth negative feedback, linear stability analysis is used to determine the
conditions for a Hopf bifurcation in the pupil area as a function of various neurophysiological parameters of the
system such as the time delay and the strength of neural connections. We also investigate oscillation onset in
the case of piecewise negative feedback and obtain an analytical expression for the period of oscillations.
Finally, complex periodic behavior is shown to arise in the presence of mixed feedback.
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I. INTRODUCTION Another way of inducing spontaneous oscillations is to
use an important experimental technique called clamping
The pupil light reflex is an important noninvasive tool for [3,5,6]. The feedback loop of the pupil light reflex is first
pinpointing certain types of disorder in visually impaired pa-“opened” by focusing a narrow beam of light on the center
tients (see, e.g.[1], and references therginUnder normal  ©of the pupil in order to remove the shadowing effect of the
operating conditions the reflex may be viewed as a nonlinedifis on the retingsee Fig. 2)]. This is called a Maxwellian
closed-loop feedback system for regulating the retinal lightview. The retinal area exposed to the light beam is constant
flux. A simple schematic diagram is shown in Fig. 1. Theso that the total flux hitting the retina depends only on the
pupil area is determined by the interaction between constrictight intensity and not the pupil area. The feedback loop is
ing and dilating mechanisms. Pupil contraction is caused bjhen reclosed electronically by altering the light intensity ac-
excitation of the circular pupillary constriction muscle inner- cording to the measured pupil area. This experimental setup
vated by the parasympathetic fibers. The motor nucleus fogxploits the near synchrony of the pupillary activity of the
this muscle is the Edinger-Westphal nucleus located in thévo eyes. That is, when one eye is exposed to light, both
midbrain. There are two main mechanisms for pupil dilation:€yes have an almost identical response, so that it is sufficient
(i) an active component arising from activation of radial pu-to measure the response of the unexposed eye. It can be
p|||ary dilator muscles a|0ng Sympathetic fibers afiid a shown that the clamped pUpI| |Ight reflex exhibits oscilla-
passive component involving inhibition of the Edinger- tions along similar lines to edge-light conditions once the
Westphal nucleus. The sympathetic activity governing thedain of the externally controlled feedback becomes suffi-
pupil response is related mainly to the thalamus, hypothalaciently large[3,5,6].
mus, and reticular system and reflects emotional states, pain Recently, Longtin and Miltor{7,8] developed a math-
and attention. ematical model of pupil cycling under edge-light or clamped
One potential indicator of disease is an extension in th&onditions using a first-order nonlinear delay-differential
cycle period, termed pupil cycling tim@CT), of the rhyth- ~ equation. This described the dynamics of the pupil area in
mic contraction and dilation of the pupil under “edge-light” terms of a model of the iris muscle response to efferent ac-
conditions [2—4]. Under normal operating conditions the tivity. The latter was taken to be a logarithmic function of
amount of light entering the eye is proportional to the pupilthe retinal light flux, which is consistent with experimental
area[Fig. 2a)]. In contrast to this, under edge-light condi- data. Using a mixture of linear stability analysis and numeri-
tions a narrow pencil of lightof constant illuminatioh is
placed near the iris margin at a position denoted by a thresh- ini
old A, so that some light enters the eye and the pupil con- light \ zgftff,ft“y‘
tracts. The contraction of the pupil prevents the light beam O — )
from entering the eye and the pupil subsequently dilates.
This allows the light to enter the eye again, the pupil con-
tracts and a cycling process is thus initiafsde Fig. 2)].
There is a time delay of approximately 300 ms in the re-
sponse of the pupil to changes in retinal illumination whereas
the PCT can vary from 1-3 s. The range of values of the —
threshold Ay, for which the pupil oscillates is typically fﬁ;";‘;ﬁ;ﬂ‘ge)
smaller than the total allowed physical variation of the pupil
area, and varies from patient to patient, even in the absence FIG. 1. Schematic diagram of the pupil light reflex showing
of diseasd4]. negative feedback loop.

midbrain
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d=IA allows for closer agreement with experimental data on mixed
feedback than the original Longtin-Milton model. Hence, the
experimentally motivated second-order delay equation pre-
Q % sented in this paper accounts for certain discrepancies of the
previous first-order model both in open-loop and closed-loop
configurations. Furthermore, it allows one to investigate the
a) Closed-loop: normal ¢) Open-loop dependence of pupil light reflex dynamics on various neuro-
physiologically important parameters of the system such as
the effective strength of neural connections and the time de-
—— ———~ % lay. These parameters vary from patient to patient and ex-

¢=IAI'

% treme values can be an indicator of a pathology.

II. OPEN-LOOP RESPONSE TO FORCED OSCILLATIONS

q) = 0 @: (DO
A<Ay A> Ay The Longtin-_MiIton model of thg pupil light re_flt_ax repre-
sents the relation between the iris muscle activity and the
b) Closed-loop: edge-light retinal input in the form of a closed delay-differential equa-

tion for the pupil ared(t) [7,8]
FIG. 2. Operating configurations of the pupil light reflex. Here
is the light intensity ® is total light flux entering pupil from given dg dA
light source A is pupil area(shadedg A, is retinal illumination area dA E+ ag(A(t))=1yIn
in Maxwellian view, andAy, is area threshold for edge light.

m} D ()= (DA(L)

¢
(2.0

cal simulation, they showed that in the case of smooth feedyjith | the light intensity,¢ the threshold retinal illumination,
back ianeaSing the gain induced a Supercritical HOpf bifur-anda and v positive constants. The time de|a}has contri-
cation in the pupil area from a stable equilibrium point to apytions from the iris, neural pathways, and the retina. In Eq.
stable limit CyCIe. Although the Longtin-Milton model pro- (21) the efferent activit)(parasympathet)cproduced by the
vides a good account of pupil cycling, it has a major limita- Edinger-Westphal nuclei is taken to be a logarithmic func-
tion as a more general model of the pupil light reflex since itiion of the retinal light flux. This incorporates the well-
neglects any details concerning the dynamic response of thgyown Weber-Fechner lafil]. The functiong is the inverse
retina. As we have recently demonstrated, this results in apf the iris sphincter muscle functiom=h"1, whereh re-
incorrect description of the pupil response to sinusoidallyjates muscle activity to pupil areA=h(x). An experimen-

modulated light in an open-loop configuratif®l. Such be-  ta)ly based choice for the functidmis the Hill function
havior can be accounted for, however, by extending the

Longtin-Milton model to include a phenomenological repre- n

sentation of the dynamics of the retinal system in the form of h(X) = (Amax— Amin) =55 + Amin (2.2

a leaky-integrator shunting equatif®]. The dynamics of the 0"+x

pupil light reflex is now described by a second-order delay-

differential equation, which can be decomposed into a pair oWvith A, , Anax the minimum and maximum pupil are@, is
first-order delay-differential equations, one representing théhe value ofx at which the pupil area takes on its midrange
iris component and the other the retinal component of thezalue, andn indicates the steepness lofin midrange. Fol-
reflex arc. lowing Longtin and Milton [8] we take A,=30 mnt,

In this paper, we study spontaneous oscillations in thé\,j,=0 mn?, ®=1/3 (in dimensionless unijsandn=4.
extended Longtin-Milton model. The model is introduced in  As mentioned in the Introduction, although the above
Sec. Il where the response to forced oscillations under opemnodel accounts reasonably well for spontaneous oscillations
loop conditions is described. We show how the results obf the pupil light reflex under closed-loop conditions, it gives
Ref.[9] can be understood in terms of the concavity or con4ncorrect behavior in response to forced oscillations under
vexity of the various nonlinearities present in the model. Inopen-loop conditions. Experimentally it is found that when
Sec. Il we use linear stability analysis to derive conditionsthe light-adapted pupil is exposed to sinusoidally modulated
for oscillation onset via a Hopf bifurcation in the case of light without changing the average illumination, the pupil
smooth negative feedback. We show that the PCT near theontracts further and the shift in average pupil size depends
bifurcation point lies in the rang&r,) rather then(27,47) on the modulation frequency [11,4]. The shift increases
as in the original Longtin-Milton model. We then consider with w at relatively low frequencies and decreases witht
the case of piecewise constant negative feedback in Sec. IMigher frequencies. The latter effect has a significant neural
The latter, which corresponds to edge-light conditions, is nocomponent, since it is observed at frequendie® Hz)
amenable to Hopf bifurcation analysis since the feedback isbove which the iris stops tracking the modulation. The
nondifferentiable. Instead, we extend the analysis of an desmooth variation of the signal makes this behavior different
Heiden and Mackey10] to derive an analytical expression from the contraction in response to sudden changes in light.
for the pupil-cycling time under edge-light conditions. Fi- It is simple to show that the Longtin-Milton model actu-
nally, the complex dynamics associated with mixed feedbacklly generates a shift of the wrong sign, that is, it predicts
is studied in Sec. V. Importantly, we show that our modelthat the pupil dilates rather than contracts. Moreover, this
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shift is frequency independent. Under open-loop conditionsinits of V are fixed by takingK=1. In the leaky-integrator
[Fig. 2(c)] ®(t) in Eqg. (2.1) becomes(for sinusoidally equation(2.79 we are assuming that the change in synaptic

modulated light conductance is proportional to the input light fld@(t) with
LA i t=0 the constant of proportionality set equal to unity for conve-
I g . . . . g .
D(t)=1(1)A, = oA 2.3 nience. Such an equation is of course a gross simplification

of the transduction process that converts incident light en-
ergy on the retina to nerve impulses emitted by retinal gan-
with I, /1p=<1 andA, is the constant illuminated retinal area. glion cells. The functionf represents the neural activation
Suppose that the system is operating in its midramge, function. A biologically plausible choice fdris the sigmoid
~A*=h(0®), so thatg can be approximated by a linear function

function

g(A)~BA-B*), B=g'(A*), B*=A*—p lg(A*), _ 1
(2.4 fv) 1+eX[{—K(V—Vth)]

(|0+|1S|n wt)A, if t>0

(2.8

where3<0. Equation(2.1) can then be written in the form | .. x,Vy, constant. We shall set=6/K and V=K. We
also takee to be fixed in the range 10—100%(typical of a

at d—A+A(t): F((t)) membrane decay ratand a=3 s 1. Thus the only free pa-
dt rameters of our model will be the delaythe strength of the
vy [[lo+11Sin o(t—1)]A, efferent activity y, and the specification of the light flux
=—In +B* d(t).
ap ¢ We shall indicate how the additional equati¢h7a can

(2.5 account for a number of important biological features in a
) ) simple manner. The inclusion of shunting implies that there
(note that the delay has no dynamical effects in open)loop gyists an effective decay ratdt) for the membrane poten-
The equilibrium pupil area in the absence of periodic forcing;ig V(t) that depends on the retinal flu(t), that is,
is Ag=F(ly). For any periodic functiorX(t) with periodT,

define the time average by e(t)=e+D(t)— . 2.9

— 1 T

=7 fo X(t)dt. (2.6)  Equation(2.9 has several immediate consequences. First, it

provides a mechanism for the experimentally observed

asymmetry between fast pupil contraction and slow pupil
: - : . ; dilation[1]. For increasing the retinal flu®(t) increases the
th.e given periodic forcmgLobtameQ py @/_e@ng qu.'S) effective decay rate and hence leads to a faster contraction
W't,h respect t(_I OVE@E.HOGF], saUsﬂgsA—F(I). The first than dilation. (Another contribution to this asymmetry is
pplnt to r_10te is thak(l) is frequency mdepgndent. Second, thought to arise from differences in the rateof iris muscle
since In is a concave function andaB<0, it follows that  coniraction and dilation7].) Second, shunting naturally
F(1)=F(1)=F(lo). ThereforeA—Ay=0, that is, the model gjves a logarithmiclike compression of retinal response that
predicts incorrectly that the pupil dilates. is consistent with the Weber-Fechner Ifi2]. Indeed, in the

'We shall now describe how to extend the above Longtinpresence of constant illuminatio®, the steady-state re-
Milton model in order to obtain the correct response to perisponse is

odic forcing[9]. The basic idea of the new model is to in-

Ignoring transients, the average pupil aredn response to

clude a biologically plausible representation for the retinal K(do— )
component of the reflex arc, which incorporates the logarith- Vozé. (2.10
miclike compression of the retinal illuminatiorb(t) e+t ®o—¢

=I(t)A(t). This is modeled as a single unit by a standard

leaky-integrator shunting equation leading to the system oEquation(2.10 shows thatVy—K as ®,— (saturation.

equations The fact thatV saturates due to shunting implies that the
maximum efferent activity ig/f(K), which can be exploited

dv . : h ; )
o V() H[D(D)— S[K—V(D)], 2.79 as follows:(a) By choosingVy,=K we can restrict the sys

dt tem to operate in the convex domain of the sigmoid function
f, that is,f(V(t))<1/2 for all t. This ensures that the model
dg dA exhibits the correct open-loop respori$é (see below. (b)
dA gt T a9Am)=yf(V(t—1). (27D Equation(2.7) shows that the maximum muscle activity is

Xmax=Yf(K)/a. Under normal operating conditions we would
The additional dynamical variabM is the membrane poten- expecth(Xma)=~Amin, that is,Xy,=0(1). This immediately
tial of the unit represented by the leaky integrator. The shuntdetermines the scale afto be y=0(«).
ing effect describes the increase in synaptic conductance in- Now suppose thab(t) is given by Eq.(2.3). Proceeding
duced by the arrival of action potentials such that the changes in the analysis of the Longtin-Milton model by linearizing
in the membrane potentid depends on the difference be- g(A) according to Eq(2.4) and averaging EJ2.7) over one
tweenV and a fixed membrane reversal potenté@al The  period, we find that
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V=K(Py— ¢)—D,V, Kzéf(_vwr B* | Y f(V(A))
(2.1

wheree=e+®dy,— ¢, ;=1;A,, i=0,1, and \

increasing G

~ 1 (7
\% T fo sin(wt)V(t)dt. (2.12 oL g(A)

Suppose that the system is operating in the convex domain of E

the sigmoid function(2.8), which is reasonable for the light- : A

adapted eye. LeV,,Aq be the equilibrium area and mem- A*

brane potential in the absence of periodic forcing. Then we

can write FIG. 3. Equilibrium ared* for smooth negative feedback with

V(A) defined byV(A)=KGA/(e+GA).
_ y - — .
A_AOZE{[f(v)_f(V)]+[f(V0_q)1V/f)_f(VO)]}' The system(3.1) has one equilibrium point\(* ,A*) if
(2.13  the iris muscle functiorg and the time constant are con-
R sidered the same for pupil dilation and contractiesae Fig.
It can be shown tha¥>0 so that the second square bracket3).
on the right-hand side of E¢2.13 is negative. On the other

hand, the first square bracket is positieenvexity off ) and *_ Kd(A*,G) 3.3
the net result is that the average shiift=A— A,<0, that is, e+ ®(A*,G)’ '
the pupil contracts. Moreover, the model predicts the correct

frequency dependence fafA above 2 Hz. The low fre- ag(A*)=yf(V*). (3.4

guency behavior can also be accounted for by reintroducin
the iris nonlinearityg. Thus all the nonlinearities present in
the model contribute to the frequency-dependent shift in av
erage pupil size when light is sinusoidally modulated. do
Given the success of the extended Longtin-Milton model —=—ev(t)+pua(t), (3.53

9\/e assume thag’' (A)#0, for all A. Linearizing Eq.(3.1)
about this equilibrium point gives

in accounting for the open-loop response to forced oscilla- dt
tions, we shall establish in the remaining sections that the
. . - . _ da
model also exhibits the appropriate behavior in a closed-loop = —aa(t) + qu(t—7) (3.5h
configuration, thus providing an interesting example of an dt

experimentally motivated second-order delay-differential . .
equation. Moreover, in the case of mixed negative feedbackith v(t)=V(t)—V*, a(t)=A(t) —A*, and
(Sec. V), we shall show that the second-order model ac-

~— *
counts for certain discrepancies that the original first-order e=et O(A%,G), 36
model has with experimental data. 9
p=(K=V*) —L ®AG) | 3.7
Ill. SMOOTH NEGATIVE FEEDBACK A=A*
The system of delayed differential equatidi2s7) under f/(V*)
smooth negative feedbac¢klamped conditionsbecomes n=vy W (3.8

d—vz—eV(t)+<I>(A(t),G)[K—V(t)], (3.19 and €,u,a>0, »<0. The characteristic matrig(s) of the
dt system is found by substituting(t) =v,e®, a(t)=age"
into Eq. (3.5 to give
dg dA q 9

I gr T A9AM)=f(V(t-1) (3.1b ste  —nu

“°l=0, F(s)=

F(s) (3.9

_ ) ) —ne"™ s+af’
with ®(A(1),G)=14(A(t),G)A,, where A, is the retinal

area illuminated in Maxwellian view and, is the externally  The characteristic equation of the linear system is then
controlled light intensity, which depends both on the pupildetF(s)=0, that is,

areaA(t) and on some controllable gain parame®rThe

total delayr can also be manipulated by introducing an ad- %+ (e+ a)s+ ae— pu exp(—s7)=0. (3.10
ditional external delay in the reclosed feedback loop. For

concreteness, we shall consider smooth negative feedback in The initial system of equatior(8.1) is stable forr=0 and

which the light intensity is proportional to the pupil af@J: ~ can undergo a change in stability of the equilibrium point
when one or more roots of equati@ 10 for 7>0 cross the

d(A,G)=GA. (3.2 imaginary axis. The characteristic equati®10 has no
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I is the Hopf bifurcation point aty=6s 1, with a change from VoMM Y Yy g "
i . o . ms)
stable fixed point to a stable limit cyclg¢b) Stability curve for 2000 4000 6000 8000

smooth negative feedback in the plar@, ) with y=6s% T is
the Hopf bifurcation point atr=300 ms. In both diagrams
=351 =505 ®,=20¢ and the number of pairs of eigenval-
ues with positive real part is indicated by the valuenof

FIG. 5. Pupil oscillations for smooth negative feedback with
=35 e=50s"t r=300ms, y=6s!, &,=20e. Continuous
line G=1.9, dashed lineg5=5.0. Pupil area is normalized with
respect toA -
positive real roots\=0, since s>+ (e+a)s+ae>0 and
— nu exp(—sn>0 for s=0. Therefore, destabilization will eigenvalues have negative real paston the left-hand side
involve at least one pair of complex roots crossing the imagiof the stability curve. Here the conditions of the above theo-
nary axis. The conditions for the occurrence of a Hopf bifur-rem are satisfied. Provided thatis not too small, one finds
cation can be determined from the following theorem due tdhat as one increases the gérihe stability curve is crossed
Bellman and Cook¢13]: and the number of eigenvalues with positive real part
Theorem:Let H(z)=(z?+pz+q)e?+r, wherep is real  changes from zero to twgointI" in Fig. 4). It turns out that
and positiveq is real and non-negative, ands real. Denote the Hopf bifurcation is supercritical so that the polhsig-
by a, (k>0) the sole root of the equation cat(a’—q)/p,  nhals the onset of pupil cycling. For very smalbne is below
which lies on the interva[(k—1)w,k7]. We define the the stability curve and pupil cycling cannot occur for a8y
numberm as follows:(a) if r=0 andp?=2q, m=1; (b) if These results are particularly interesting since the parameter
r=0 andp?<2q, mis the oddk for which a, lies closest to 'y may be interpreted as a global neural connection strength
m; (©) if r<0 andp?=2q, m=2; (d) if r<0 and o) th?t a Iallrge reducté(_)n.Im/ could_dS|gn_aI somelformhof
p2<2q, m is the evenk for which a, lies closest to neurological damage. Similar considerations apply to the to-

tal delay timer as illustrated in Fig. ).
Vg —p?/2. o - Analytical verification of the nondegeneracy conditions
Then a necessary and sufficient condition that all the rootaecessary for a Hopf bifurcation to be supercritical is quite

of H(z)=0 lie to the left of the imaginary axis is thé r  involved for delay-differential equations, but it can be car-
=0 and ¢ sinay/(pay)<l, or (i) —g<r<O0 and ried out systematically using a center manifold reduction as
(r sinay/(pay)<1. described in some detail by Campbeit al. [14,15 and
This theorem may be applied to E(.10 with z=sr, Huang[16]. Following a similar analysis, one can establish
p=1(e+a), q= e, andr=— pu7>>0. Thus the condi- that our model does indeed undergo a supercritical Hopf bi-
tion that all roots have a negative real part is condition furcation[17]. The existence of a stable limit cycle can also
with m=1 [case(a)]. A pair of imaginary rootstiw signal-  be confirmed numerically by simulating the full model equa-
ing the onset of a Hopf bifurcation occurs whersina;  tions (3.1) as shown in Fig. 5 where we plé(t) for two
=pa, with a;= w 7. From the definition ok, we deduce that different values of the gaifs. We find that the amplitude of
w is determined from the pair of equations oscillations is an increasing function Gfexcept for larges.
The period of oscillations is approximately constant, around
1 s for the parameter valuea=3s! e=50s? 7
=300ms,y=6s 1, ®,=20e. These numerical results are
consistent with the experimental d4&.

w?— ae+ pu coswr=0, (3.11

(e+a)w+ pu sinwr=0 (3.12

with w7e (0,7). Equations(3.11) and (3.12 can also be
obtained by setting=iw in Eq. (3.10 and equating real and V. PIECEWISE-CONSTANT NEGATIVE FEEDBACK
imaginary parts. We note that the period of oscillatidns In this section, we turn to the case of piecewise-constant
=2/ w takes values in the rand@r,») rather than2r,47)  negative feedback, which arises under edge-light conditions
as in the Longtin-Milton modé€]8]. [Fig. 2(b)] or can be implemented using clamping and exter-
Figure 4a) shows the stability curve for smooth negative nally controlled feedback. Since the feedback is not de-
feedback(3.2), which is obtained from numerical solutions scribed by a differentiable function, it is no longer possible
of Egs. (3.11 and (3.12 in the two dimensional subspace to use techniques from Hopf bifurcation theory. Instead, we
(G,y) with 7 and @, fixed. Note thaty, u, €, and » all shall study the existence of periodic solutions along similar
depend ony either directly or through the equilibrium point lines to an der Heiden and MackglQ]. To find an analyti-
(V*,A*). The region for which the equilibrium is stabfall ~ cal solution we consider a linearized iris function as in Eqg.
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(2.4). The system of equatior(8.1) becomes
G~ “LeF PAMIVI KAL), (413
GE - A V(=) vaB (@b
with
0 if A<Ay,
A= o, it ASA,, 423

andA <Ay To simplify the analysis we shall assume that
the synaptic input induced by the retinal light flux is large,

® > €,a. Under this condition one can tak&t)~K for all
t such thatA(t)=Ay,. We consider the onset of edge-light
stimulation att=tg and fort<tg the variablesv(t), A(t),

P. C. BRESSLOFF AND C. V. WOOD

PRE 58
and

Va(9)=K, (4.9

AZ(0)=Aont [AZ(0)—Agle . (4.9

The solutions are patched together using the condition

(4.10

We shall now prove that after an initial transient phase the
system exhibits periodic behavior. We first note that
AZI(Ag— 7)=Ay, for all j=1. Equation(4.10 then implies
that for allj=1

AL(A)=ATY0).

AZFY0)=B=Agn+[An—Anle " (4.1

ThusA2*%(0) is independent of the initial data so that Eq.
(4.7) has the same initial condition, and hence the same so-

with A,(t)=A(t+7), are taken to be the steady-state solu-jytion, for all j=1. In particular Ay, =Aq4 for all j=1

tions for constant light fluxb,. That is, V(t)=K, A(t)
=A., for t<tg, where

., YHK)

Agn=B* +
on aﬂ

(4.3

This corresponds to an experimental setup in which the light
source is moved from the center to the pupillary margin at

the timet=t;. We shall assume thak,,<Ay,, otherwise

A, would be a stable fixed point of the system. Finally, we

linearize f in Eqg. (4.1b by taking f(V)=f(K)—(K
—=V)f'(K), and define

Aoﬁ:B*+£ [F(K)—KF’(K)]. 4.9

Lett;, integeri=1, denote théth time that the pupil area
A(t) crosses the thresholdy,, either from below(oddi) or
from above(eveni) and sett,=0. Introduce the intervals
li=[ti_1.t;), i=1. If tel; for odd integeri then A(t) <Ay
and V(t) is an exponentially decreasing function of time,
whereas, ift e |; for even integei thenA(t)= Ay, and V(t)
=K (since®, is large. Similarly, the time-shifted pupil area
A,(t) is an increasingdecreasing function of time fort
el, andi an odd(even integer. One can iteratively solve
Eq. (4.1 for the pair(V(t),A(t)) by integrating with respect
to t over each intervall; under the initial condition
(K,A(ti_1)) with A(t;_,) the final state of the solution
obtained over the previous interval ;. It is useful to intro-
duce the indexed set of functions

(Vi(0),A(0)=(V(ti_1+0),A(ti_1+0), (4.5

wherefe[04;), Aj=t;—t;_;, andi=1. Solving Eq.(4.1)
then gives forj=1

Vvatl(g)=Ke <, (4.6
a(Aott—Aon) o-ab
a— €

AZIFL(g) = Ayt | AZTL(0) — A+

_ a(Aott— Aon) ocb
a—e€

(4.7

where A4 is the solution to the equatioA,=A%"1(Aq
— 1), which yields
a(Aoti—Aon)

a—e€

A= Aot =

B— Ayt }e‘““d‘”

_ a(Aoti— Aon) o elbg-7)
a— €

(4.12

It also follows thatA? “1(A,) is independent of for all
=2 so that from Eqs(4.7) and(4.10

. — a(Ag—A
AZ(0)=B=Ags+|B—Agy+ % e *Ad
a(Ag—A
_ Aot = Aor) an, (4.13

a— €

Equation(4.13 implies that Eq.(4.9) has the same initial
condition B, and hence the same solution, for gi#2. In
particular,A,;=A_ for all j=2 with A the solution to the
equationAth=AfJ(Ac— 7), which can be solved explicitly to
give

B—A,,
Ath_ Aon

1
A;=—1In + 7.
@

(4.19

We conclude from the above analysis that Eq1) has a
periodic solution(V(t),A(t)) for all t>t,=A;+ A, and the
pupil cycling time is

T=A:+Ay (4.19
with A, and A4 determined by Eqs(4.14 and (4.12), re-
spectively. The amplitude of the oscillation is given By
—B. A numerical example of an oscillatory solution in the
case of largeb is shown in Fig. 6. A phase portrait of limit
cycle oscillations in the spad@,,A(t— 7),A(t)) for vari-
ous values of the threshold, is plotted in Fig. 7.

The feedback system described by E¢El) and (4.2
also exhibits oscillatory behavior for smaller valuesdaf,
except that now the solution is obtained asymptotically in the
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ts 1 2 3 4 5 6 FIG. 8. Pupil oscillations for piecewise linear negative feedback

FIG. 6. Pupil oscillations for piecewise linear negative feedback©" small_light flux. Al parameter values are as in Fig. 6 except that
With Ay, /A.=0.5 andt, the time for onset of “edge-light” stimu-  Ath/Ama=0.85 and®, =2e.
lation. Herea=3s?, e=10s !, =300 ms, y=6s %, and ®, _
=20e. The variablesA andV are normalized with respect #,, Vé0)=U, VY%0)=uU, (4.18
andK, respectively. .
- . o A%0)=B, A%0)=B, (4.19
limit t—oo rather than after a finite interval. In practice, this .
convergence is very rapid, as can be seen in Fig. 8. We shalihereU andU are the minimum and maximum values of the
briefly indicate how to determine the resulting periodic SO'“'periodic solution for/(t). Similarly, B andB are the mini-
tion. Following the previous analysis of the strong flux case,,um and maximum values of fhe periodic solution for
Egs. (4.5-(4.9, we can decompose the periodic solutlonAT(t)_ The functionsVe9(6) are found by solving Egs.

into a contracting phase and a dilating phase: (4.13 and (4.18 to give
lim (V2(6),AZ(6))=(V(6),A%(0)), 0e[0A,), . K, i —
|0 Ve(9)=Ue “/+ = [1—e €], Vi(9)=Ue <,
(4.19 (4.20
lim (V2+2(9), A2+ (0))=(V9(6),A%0)), 0e[0A4], where e=®,+e. Similarly, the functionsA®%(6) are ob-

jooe 41 tained by solving Eqs4.1b and (4.19 using the solutions
(41D for v (6). The result is

whereT=A_.+ Ay is the period of oscillation. We also have

~ AC =A 4+ ACe adpTC — €6
the initial conditions (0)=Aont+A%e e <,

AY()=A+Ae” 0+ T %<, (4.21
where
* K(I)Ofl c - c
Aoi=B*+fot —=—, A°=B—Ay—T",
af Kd
re=—=5 [u- -2, (4.22
a—e€ €
afl —
Aoi=B*+fo, A9=B—Ay—T¢, Fd:a—eu'
(4.23

In deriving these equations, we have lineariZ¢¥) in Eq.

(4.1b about a mid-range point* <K and setyf(V)/(aB)
FIG. 7. Phase plane for pupil cycling with the parameter pupil~ fo+ f1V. Finally, the unknown amplitudds, U, B, andB

areaAy, as a third dimension. Parameters are as in Fig. 6. together with the periodsA;, are determined self-



3604 P. C. BRESSLOFF AND C. V. WOOD PRE 58

consistently from the following conditiongobtained by ) " ﬂ ﬂ F
matching up the contracting and dilating solutions in Egs.
4.20 and(4.21]: 24
(4.20 and (4.21] o A
VA(A9)=V(0), V(Ay)=V0), E 20
E 18
AUA)=AY0), AYAY=A%0),  (4.24 gls
12
AS(A—1)=Apn, AYAG—T7)=Ag. (4.25 V.V
V. MIXED FEEDBACK (b) ] | H | ” | H I
It is instructive to make more explicit the connection be- 24
tween Egs.(4.1) and (4.2 and the class of piecewise- &E‘ /\ /\ /\ /\
constant delayed-feedback models considered by an der £22 \ 1] ] ]
Heiden and Macke){10]. Let a(t)=A(t)—A,, and a §20
=Ay— A, and assume thatis sufficiently large so that we <« v \/\ / \
can takeV(t)=K whenevera(t)>ay, and V(t)=0 when- W S s
evera(t)<ay,. Equations(4.1) and (4.2) then reduce to a V \/
single delay equation for the pupil area:
da o LTI 1]
a=—aa(t)+h(a(t—7)), (5.1
.22
where cé 20 A\ /\ /\\
a(Ag—Ay)  if a<ay, Eusl |y ) !
h(a)= 0 if a>ay, ' (5.2 \/\/\ \/\/\/ \/\/\/

v \/ 2 \/3(/ 4V \/5

Equations(5.1) and(5.2) correspond to the type of negative !
feedback model analyzed in RdfL0] and is found in the Time (sec)
original Longtin-Milton model. FIG. 9. Pupil oscillations for mixed feedback and various

For many physiological control systems an equation ofchoices of thresholdé,, and A,. Here e=6 s'%, a=3 s, y
the form (5.1) arises withh[a(t—7)] given by a humped =6 s!, 7=411ms, ®,=20e. (@ A;=215 mnf, A,
function ofa(t— 7) for which maximal input occurs at some =24.75 mn3, (b) A;=21 mn?, A,=22 mn?, (c) A;=18 mnt,
intermediate value of(t— 7). In other words, the control A,=20 mnt.
system displays both positive and negative feedback charac-
teristics. Analytical and numerical studies have demonstratedriginal model with respect to closed-loop as well as open-
that mixed feedback systems can exhibit a complex varietyoop response. It turns out that this is indeed the case, as is
of periodic and aperiodi¢chaotig dynamics[10]. Of par- illustrated in Fig. 9. As the two thresholds, and A, are
ticular interest here concerns the experimental investigatiomaried, the system undergoes changes in the number of
of the dynamical effects of mixed feedback in the pupil light pulses of light received by the pupil, which is very sugges-
reflex [18,19. This was carried out under clamped condi- tive of the data presented in the cited figures. Such behavior
tions with piecewise-constant feedback of the form is also found to be quite robust. A more detailed investiga-
tion of mixed feedback will be presented elsewh2@.

B(A) [0 for A<A; andA=A, 5.3
A)= 5.
®y for Aj<A<A;. VI. DISCUSSION
The lower thresholdA; and the higher threshold, were In this paper, we have presented a mathematical model of
externally controlled. Equatio(b.2) then becomes the pupil light reflex in terms of a system of nonlinear delay-
differential equations. This model incorporates experimen-

hoa) a(Agi—Agy)  for a;<a<a, 5.4 tally determined physiological parameters that underlie the
(@)= 0 for a<a; anda=a,. (54 complex dynamical behavior of the pupil light reflex, and

nonlinear techniques such as Hopf bifurcation theory have

Interestingly, a discrepancy between the prediction of thébeen used to study the onset of this behavior. The model
original first-order Longtin-Milton model and the experimen- extends the Longtin-Milton mod¢F,8] by including a phe-
tally observed oscillations of the pupil under mixed feedbacknomenological representation of the dynamics of the retinal
was found; the model predicted too many changes in pupisystem in the form of a leaky integrator shunting equation.
area per cycle in a certain parameter regjsee Fig. 8) of  The resulting flux-dependent modulation of the effective
Ref.[19] and Fig. Tc) of Ref.[18]]. This raises the issue of time constant of the systetdue to shunting combined with
whether or not the second-order model can account for suctine various nonlinearities of the system, accounts for a wide
a discrepancy, and hence give an improvement upon theange of observed featurg$) the asymmetry between pupil
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contraction and dilatiofii) the frequency-dependent shift in process, with neuronal units becoming desynchronized due
the average pupil response when a constant light stimulus ® differences in their firing patterns after an initial synchro-
modulated by a sinusoidal inpuiji) the nonlinear summa- nized burst caused by illumination onset.

tion of signals from left and right eyeinocular versus In conclusion, the pupil light reflex is an important para-
monocular sinusoidal responsand(iv) spontaneous oscil- digm for nonlinear feedback control systems. Understanding
lations under conditions of high gain negative feedback. Futhe behavior of such systems involves important mathemati-
ture work will investigate the effects of noise arising from cal questions concerning the properties of differential equa-
the neural components of the reflex arc, as well as detailsons with delays and noise, and could benefit the clinician
concerning photoreceptor dynamics. In particular, the imporinterested in developing diagnostic tests for detecting neuro-
tant role that photoreceptors play in light adaptation will belogical disorders. It is also hoped that the work will have
investigated and contrasted with possible neural mechanisnapplications in other areas such as respiratory and cardiac

for adaptation. The latter can be modeled as a stochastontrol.
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