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Spontaneous oscillations in a nonlinear delayed-feedback shunting model of the pupil light reflex

P. C. Bressloff and C. V. Wood
Nonlinear and Complex Systems Group, Department of Mathematical Sciences, Loughborough University,

Loughborough, Leicestershire LE11 3TU, United Kingdom
~Received 3 February 1998; revised manuscript received 29 April 1998!

We analyze spontaneous oscillations in a second-order delayed-feedback shunting model of the pupil light
reflex. This model describes in a simple fashion the nonlinear effects of both the iris and retinal parts of the
reflex pathway. In the case of smooth negative feedback, linear stability analysis is used to determine the
conditions for a Hopf bifurcation in the pupil area as a function of various neurophysiological parameters of the
system such as the time delay and the strength of neural connections. We also investigate oscillation onset in
the case of piecewise negative feedback and obtain an analytical expression for the period of oscillations.
Finally, complex periodic behavior is shown to arise in the presence of mixed feedback.
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PACS number~s!: 87.10.1e, 42.66.2p
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I. INTRODUCTION

The pupil light reflex is an important noninvasive tool f
pinpointing certain types of disorder in visually impaired p
tients ~see, e.g.,@1#, and references therein!. Under normal
operating conditions the reflex may be viewed as a nonlin
closed-loop feedback system for regulating the retinal li
flux. A simple schematic diagram is shown in Fig. 1. T
pupil area is determined by the interaction between const
ing and dilating mechanisms. Pupil contraction is caused
excitation of the circular pupillary constriction muscle inne
vated by the parasympathetic fibers. The motor nucleus
this muscle is the Edinger-Westphal nucleus located in
midbrain. There are two main mechanisms for pupil dilatio
~i! an active component arising from activation of radial p
pillary dilator muscles along sympathetic fibers and~ii ! a
passive component involving inhibition of the Edinge
Westphal nucleus. The sympathetic activity governing
pupil response is related mainly to the thalamus, hypoth
mus, and reticular system and reflects emotional states,
and attention.

One potential indicator of disease is an extension in
cycle period, termed pupil cycling time~PCT!, of the rhyth-
mic contraction and dilation of the pupil under ‘‘edge-light
conditions @2–4#. Under normal operating conditions th
amount of light entering the eye is proportional to the pu
area@Fig. 2~a!#. In contrast to this, under edge-light cond
tions a narrow pencil of light~of constant illumination! is
placed near the iris margin at a position denoted by a thre
old Ath so that some light enters the eye and the pupil c
tracts. The contraction of the pupil prevents the light be
from entering the eye and the pupil subsequently dila
This allows the light to enter the eye again, the pupil co
tracts and a cycling process is thus initiated@see Fig. 2~b!#.
There is a time delayt of approximately 300 ms in the re
sponse of the pupil to changes in retinal illumination wher
the PCT can vary from 1–3 s. The range of values of
threshold Ath for which the pupil oscillates is typically
smaller than the total allowed physical variation of the pu
area, and varies from patient to patient, even in the abse
of disease@4#.
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Another way of inducing spontaneous oscillations is
use an important experimental technique called clamp
@3,5,6#. The feedback loop of the pupil light reflex is firs
‘‘opened’’ by focusing a narrow beam of light on the cent
of the pupil in order to remove the shadowing effect of t
iris on the retina@see Fig. 2~c!#. This is called a Maxwellian
view. The retinal area exposed to the light beam is cons
so that the total flux hitting the retina depends only on
light intensity and not the pupil area. The feedback loop
then reclosed electronically by altering the light intensity a
cording to the measured pupil area. This experimental se
exploits the near synchrony of the pupillary activity of th
two eyes. That is, when one eye is exposed to light, b
eyes have an almost identical response, so that it is suffic
to measure the response of the unexposed eye. It ca
shown that the clamped pupil light reflex exhibits oscill
tions along similar lines to edge-light conditions once t
gain of the externally controlled feedback becomes su
ciently large@3,5,6#.

Recently, Longtin and Milton@7,8# developed a math-
ematical model of pupil cycling under edge-light or clamp
conditions using a first-order nonlinear delay-different
equation. This described the dynamics of the pupil area
terms of a model of the iris muscle response to efferent
tivity. The latter was taken to be a logarithmic function
the retinal light flux, which is consistent with experiment
data. Using a mixture of linear stability analysis and nume

FIG. 1. Schematic diagram of the pupil light reflex showin
negative feedback loop.
3597 © 1998 The American Physical Society
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3598 PRE 58P. C. BRESSLOFF AND C. V. WOOD
cal simulation, they showed that in the case of smooth fe
back increasing the gain induced a supercritical Hopf bif
cation in the pupil area from a stable equilibrium point to
stable limit cycle. Although the Longtin-Milton model pro
vides a good account of pupil cycling, it has a major limit
tion as a more general model of the pupil light reflex sinc
neglects any details concerning the dynamic response o
retina. As we have recently demonstrated, this results in
incorrect description of the pupil response to sinusoida
modulated light in an open-loop configuration@9#. Such be-
havior can be accounted for, however, by extending
Longtin-Milton model to include a phenomenological repr
sentation of the dynamics of the retinal system in the form
a leaky-integrator shunting equation@9#. The dynamics of the
pupil light reflex is now described by a second-order del
differential equation, which can be decomposed into a pai
first-order delay-differential equations, one representing
iris component and the other the retinal component of
reflex arc.

In this paper, we study spontaneous oscillations in
extended Longtin-Milton model. The model is introduced
Sec. II where the response to forced oscillations under op
loop conditions is described. We show how the results
Ref. @9# can be understood in terms of the concavity or co
vexity of the various nonlinearities present in the model.
Sec. III we use linear stability analysis to derive conditio
for oscillation onset via a Hopf bifurcation in the case
smooth negative feedback. We show that the PCT near
bifurcation point lies in the range~2t,`! rather then~2t,4t!
as in the original Longtin-Milton model. We then consid
the case of piecewise constant negative feedback in Sec
The latter, which corresponds to edge-light conditions, is
amenable to Hopf bifurcation analysis since the feedbac
nondifferentiable. Instead, we extend the analysis of an
Heiden and Mackey@10# to derive an analytical expressio
for the pupil-cycling time under edge-light conditions. F
nally, the complex dynamics associated with mixed feedb
is studied in Sec. V. Importantly, we show that our mod

FIG. 2. Operating configurations of the pupil light reflex. HereI
is the light intensity,F is total light flux entering pupil from given
light source,A is pupil area~shaded!, Ar is retinal illumination area
in Maxwellian view, andAth is area threshold for edge light.
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allows for closer agreement with experimental data on mix
feedback than the original Longtin-Milton model. Hence, t
experimentally motivated second-order delay equation p
sented in this paper accounts for certain discrepancies o
previous first-order model both in open-loop and closed-lo
configurations. Furthermore, it allows one to investigate
dependence of pupil light reflex dynamics on various neu
physiologically important parameters of the system such
the effective strength of neural connections and the time
lay. These parameters vary from patient to patient and
treme values can be an indicator of a pathology.

II. OPEN-LOOP RESPONSE TO FORCED OSCILLATIONS

The Longtin-Milton model of the pupil light reflex repre
sents the relation between the iris muscle activity and
retinal input in the form of a closed delay-differential equ
tion for the pupil areaA(t) @7,8#

dg

dA

dA

dt
1ag„A~ t !…5g lnFF~ t2t!

f G , F~ t !5I ~ t !A~ t !

~2.1!

with I the light intensity,f the threshold retinal illumination
anda andg positive constants. The time delayt has contri-
butions from the iris, neural pathways, and the retina. In
~2.1! the efferent activity~parasympathetic! produced by the
Edinger-Westphal nuclei is taken to be a logarithmic fun
tion of the retinal light flux. This incorporates the wel
known Weber-Fechner law@1#. The functiong is the inverse
of the iris sphincter muscle function,g5h21, whereh re-
lates muscle activity to pupil area,A5h(x). An experimen-
tally based choice for the functionh is the Hill function

h~x!5~Amax2Amin!
Qn

Qn1xn 1Amin ~2.2!

with Amin , Amax the minimum and maximum pupil area,Q is
the value ofx at which the pupil area takes on its midran
value, andn indicates the steepness ofh in midrange. Fol-
lowing Longtin and Milton @8# we take Amax530 mm2,
Amin50 mm2, Q51/3 ~in dimensionless units!, andn54.

As mentioned in the Introduction, although the abo
model accounts reasonably well for spontaneous oscillat
of the pupil light reflex under closed-loop conditions, it giv
incorrect behavior in response to forced oscillations un
open-loop conditions. Experimentally it is found that wh
the light-adapted pupil is exposed to sinusoidally modula
light without changing the average illumination, the pup
contracts further and the shift in average pupil size depe
on the modulation frequencyv @11,4#. The shift increases
with v at relatively low frequencies and decreases withv at
higher frequencies. The latter effect has a significant ne
component, since it is observed at frequencies~>2 Hz!
above which the iris stops tracking the modulation. T
smooth variation of the signal makes this behavior differ
from the contraction in response to sudden changes in li

It is simple to show that the Longtin-Milton model actu
ally generates a shift of the wrong sign, that is, it predi
that the pupil dilates rather than contracts. Moreover, t



n

a.
,
r

p
ing

d,

l

tin
r
-

na
ith

r
o

-
n

ng
-

tic

e-
tion
en-
an-
n

a
re

-

t, it
ed
pil

tion
s

hat

-

he

-
ion
l

is
ld

g

PRE 58 3599SPONTANEOUS OSCILLATIONS IN A NONLINEAR . . .
shift is frequency independent. Under open-loop conditio
@Fig. 2~c!# F(t) in Eq. ~2.1! becomes~for sinusoidally
modulated light!

F~ t !5I ~ t !Ar5H I 0Ar if t<0

~ I 01I 1sin vt !Ar if t.0
~2.3!

with I 1 /I 0<1 andAr is the constant illuminated retinal are
Suppose that the system is operating in its midrangeA
'A* 5h(Q), so thatg can be approximated by a linea
function

g~A!'b~A2B* !, b5g8~A* !, B* 5A* 2b21g~A* !,
~2.4!

whereb,0. Equation~2.1! can then be written in the form

a21
dA

dt
1A~ t !5F„I ~ t !…

[
g

ab
lnF @ I 01I 1sin v~ t2t!#Ar

f G1B*

~2.5!

~note that the delay has no dynamical effects in open loo!.
The equilibrium pupil area in the absence of periodic forc
is A05F(I 0). For any periodic functionX(t) with periodT,
define the time averageX̄ by

X̄5
1

T E
0

T

X~ t !dt. ~2.6!

Ignoring transients, the average pupil areaĀ in response to
the given periodic forcing,@obtained by averaging Eq.~2.5!
with respect tot over a periodT#, satisfiesĀ5F(I ). The first
point to note is thatF(I ) is frequency independent. Secon
since ln is a concave function andg/ab,0, it follows that
F(I )>F( Ī )5F(I 0). Therefore,Ā2A0>0, that is, the mode
predicts incorrectly that the pupil dilates.

We shall now describe how to extend the above Long
Milton model in order to obtain the correct response to pe
odic forcing @9#. The basic idea of the new model is to in
clude a biologically plausible representation for the reti
component of the reflex arc, which incorporates the logar
miclike compression of the retinal illuminationF(t)
5I (t)A(t). This is modeled as a single unit by a standa
leaky-integrator shunting equation leading to the system
equations

dV

dt
52eV~ t !1@F~ t !2f#@K2V~ t !#, ~2.7a!

dg

dA

dA

dt
1ag„A~ t !…5g f „V~ t2t!…. ~2.7b!

The additional dynamical variableV is the membrane poten
tial of the unit represented by the leaky integrator. The shu
ing effect describes the increase in synaptic conductance
duced by the arrival of action potentials such that the cha
in the membrane potentialV depends on the difference be
tween V and a fixed membrane reversal potentialK. The
s
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i-
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-

d
f
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e

units of V are fixed by takingK51. In the leaky-integrator
equation~2.7a! we are assuming that the change in synap
conductance is proportional to the input light fluxF(t) with
the constant of proportionality set equal to unity for conv
nience. Such an equation is of course a gross simplifica
of the transduction process that converts incident light
ergy on the retina to nerve impulses emitted by retinal g
glion cells. The functionf represents the neural activatio
function. A biologically plausible choice forf is the sigmoid
function

f ~V!5
1

11exp@2k~V2Vth!#
~2.8!

with k,Vth constant. We shall setk56/K and Vth5K. We
also takee to be fixed in the range 10– 100 s21 ~typical of a
membrane decay rate! anda53 s21. Thus the only free pa-
rameters of our model will be the delayt, the strength of the
efferent activity g, and the specification of the light flux
F(t).

We shall indicate how the additional equation~2.7a! can
account for a number of important biological features in
simple manner. The inclusion of shunting implies that the
exists an effective decay ratee(t) for the membrane poten
tial V(t) that depends on the retinal fluxF(t), that is,

e~ t !5e1F~ t !2f. ~2.9!

Equation~2.9! has several immediate consequences. Firs
provides a mechanism for the experimentally observ
asymmetry between fast pupil contraction and slow pu
dilation @1#. For increasing the retinal fluxF(t) increases the
effective decay rate and hence leads to a faster contrac
than dilation. ~Another contribution to this asymmetry i
thought to arise from differences in the ratea of iris muscle
contraction and dilation@7#.! Second, shunting naturally
gives a logarithmiclike compression of retinal response t
is consistent with the Weber-Fechner law@12#. Indeed, in the
presence of constant illuminationF0 the steady-state re
sponse is

V05
K~F02f!

e1F02f
. ~2.10!

Equation~2.10! shows thatV0→K as F0→` ~saturation!.
The fact thatV saturates due to shunting implies that t
maximum efferent activity isg f (K), which can be exploited
as follows:~a! By choosingVth5K we can restrict the sys
tem to operate in the convex domain of the sigmoid funct
f, that is, f „V(t)…,1/2 for all t. This ensures that the mode
exhibits the correct open-loop response@9# ~see below!. ~b!
Equation~2.7b! shows that the maximum muscle activity
xmax5gf(K)/a. Under normal operating conditions we wou
expecth(xmax)'Amin , that is,xmax5O(1). This immediately
determines the scale ofg to beg5O(a).

Now suppose thatF(t) is given by Eq.~2.3!. Proceeding
as in the analysis of the Longtin-Milton model by linearizin
g(A) according to Eq.~2.4! and averaging Eq.~2.7! over one
period, we find that
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3600 PRE 58P. C. BRESSLOFF AND C. V. WOOD
êV̄5K~F02f!2F1V̂, Ā5
g

ab
f ~V!1B* ,

~2.11!

whereê5e1F02f, F i5I iAr , i 50,1, and

V̂5
1

T E
0

T

sin~vt !V~ t !dt. ~2.12!

Suppose that the system is operating in the convex doma
the sigmoid function~2.8!, which is reasonable for the light
adapted eye. LetV0 ,A0 be the equilibrium area and mem
brane potential in the absence of periodic forcing. Then
can write

Ā2A05
g

ab
$@ f ~V!2 f ~V̄!#1@ f ~V02F1V̂/ ê !2 f ~V0!#%.

~2.13!

It can be shown thatV̂.0 so that the second square brack
on the right-hand side of Eq.~2.13! is negative. On the othe
hand, the first square bracket is positive~convexity off ! and
the net result is that the average shiftdA5Ā2A0,0, that is,
the pupil contracts. Moreover, the model predicts the cor
frequency dependence fordA above 2 Hz. The low fre-
quency behavior can also be accounted for by reintroduc
the iris nonlinearityg. Thus all the nonlinearities present
the model contribute to the frequency-dependent shift in
erage pupil size when light is sinusoidally modulated.

Given the success of the extended Longtin-Milton mo
in accounting for the open-loop response to forced osc
tions, we shall establish in the remaining sections that
model also exhibits the appropriate behavior in a closed-l
configuration, thus providing an interesting example of
experimentally motivated second-order delay-differen
equation. Moreover, in the case of mixed negative feedb
~Sec. V!, we shall show that the second-order model
counts for certain discrepancies that the original first-or
model has with experimental data.

III. SMOOTH NEGATIVE FEEDBACK

The system of delayed differential equations~2.7! under
smooth negative feedback~clamped conditions! becomes

dV

dt
52eV~ t !1F„A~ t !,G…@K2V~ t !#, ~3.1a!

dg

dA

dA

dt
1ag„A~ t !…5g f „V~ t2t!… ~3.1b!

with F„A(t),G…5I ext„A(t),G…Ar , where Ar is the retinal
area illuminated in Maxwellian view andI ext is the externally
controlled light intensity, which depends both on the pu
areaA(t) and on some controllable gain parameterG. The
total delayt can also be manipulated by introducing an a
ditional external delay in the reclosed feedback loop. F
concreteness, we shall consider smooth negative feedba
which the light intensity is proportional to the pupil area@3#:

F~A,G!5GA. ~3.2!
of
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The system~3.1! has one equilibrium point (V* ,A* ) if
the iris muscle functiong and the time constanta are con-
sidered the same for pupil dilation and contraction~see Fig.
3!.

V* 5
KF~A* ,G!

e1F~A* ,G!
, ~3.3!

ag~A* !5g f ~V* !. ~3.4!

We assume thatg8(A)Þ0, for all A. Linearizing Eq.~3.1!
about this equilibrium point gives

dv
dt

52 êv~ t !1ma~ t !, ~3.5a!

da

dt
52aa~ t !1hv~ t2t! ~3.5b!

with v(t)5V(t)2V* , a(t)5A(t)2A* , and

ê5e1F~A* ,G!, ~3.6!

m5~K2V* !
]

]A
F~A,G!U

A5A*
, ~3.7!

h5g
f 8~V* !

g8~A* !
~3.8!

and ê,m,a.0, h,0. The characteristic matrixF(s) of the
system is found by substitutingv(t)5v0est, a(t)5a0est

into Eq. ~3.5! to give

F~s!S v0

a0
D50, F~s!5S s1 ê 2m

2he2ts s1a D . ~3.9!

The characteristic equation of the linear system is th
detF(s)50, that is,

s21~ ê1a!s1aê2hm exp~2st!50. ~3.10!

The initial system of equations~3.1! is stable fort50 and
can undergo a change in stability of the equilibrium po
when one or more roots of equation~3.10! for t.0 cross the
imaginary axis. The characteristic equation~3.10! has no

FIG. 3. Equilibrium areaA* for smooth negative feedback wit
V(A) defined byV(A)5KGA/(e1GA).
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positive real rootsl>0, since s21( ê1a)s1aê.0 and
2hm exp(2st).0 for s>0. Therefore, destabilization wil
involve at least one pair of complex roots crossing the ima
nary axis. The conditions for the occurrence of a Hopf bif
cation can be determined from the following theorem due
Bellman and Cooke@13#:

Theorem:Let H(z)5(z21pz1q)ez1r , wherep is real
and positive,q is real and non-negative, andr is real. Denote
by ak (k.0) the sole root of the equation cota5(a22q)/p,
which lies on the interval@(k21)p,kp#. We define the
numberm as follows:~a! if r>0 andp2>2q, m51; ~b! if
r>0 andp2,2q, m is the oddk for which ak lies closest to

Aq2p2/2; ~c! if r ,0 andp2>2q, m52; ~d! if r ,0 and
p2,2q, m is the evenk for which ak lies closest to

Aq2p2/2.
Then a necessary and sufficient condition that all the ro

of H(z)50 lie to the left of the imaginary axis is that~i! r
>0 and (r sinam)/(pam),1, or ~ii ! 2q,r ,0 and
(r sinam)/(pam),1.

This theorem may be applied to Eq.~3.10! with z5st,
p5t( ê1a), q5t2êa, andr 52hmt2.0. Thus the condi-
tion that all roots have a negative real part is condition~i!
with m51 @case~a!#. A pair of imaginary roots6 iv signal-
ing the onset of a Hopf bifurcation occurs whenr sina1
5pa1 with a15vt. From the definition ofa1 we deduce that
v is determined from the pair of equations

v22aê1hm cosvt50, ~3.11!

~ ê1a!v1hm sin vt50 ~3.12!

with vtP(0,p). Equations~3.11! and ~3.12! can also be
obtained by settings5 iv in Eq. ~3.10! and equating real and
imaginary parts. We note that the period of oscillationsT
52p/v takes values in the range~2t,`! rather than~2t,4t!
as in the Longtin-Milton model@8#.

Figure 4~a! shows the stability curve for smooth negati
feedback~3.2!, which is obtained from numerical solution
of Eqs. ~3.11! and ~3.12! in the two dimensional subspac
(G,g) with t and F r fixed. Note thath, m, ê, and v all
depend ong either directly or through the equilibrium poin
(V* ,A* ). The region for which the equilibrium is stable~all

FIG. 4. ~a! Stability curve in the plane (G,g) with t5300 ms.
G is the Hopf bifurcation point atg56 s21, with a change from
stable fixed point to a stable limit cycle.~b! Stability curve for
smooth negative feedback in the plane (G,t) with g56 s21. G is
the Hopf bifurcation point att5300 ms. In both diagramsa
53 s21, e550 s21, F r520e, and the number of pairs of eigenva
ues with positive real part is indicated by the value ofn.
i-
-
o

ts

eigenvalues have negative real part! is on the left-hand side
of the stability curve. Here the conditions of the above the
rem are satisfied. Provided thatg is not too small, one finds
that as one increases the gainG the stability curve is crossed
and the number of eigenvalues with positive real p
changes from zero to two~point G in Fig. 4!. It turns out that
the Hopf bifurcation is supercritical so that the pointG sig-
nals the onset of pupil cycling. For very smallg one is below
the stability curve and pupil cycling cannot occur for anyG.
These results are particularly interesting since the param
g may be interpreted as a global neural connection stren
so that a large reduction ing could signal some form of
neurological damage. Similar considerations apply to the
tal delay timet as illustrated in Fig. 4~b!.

Analytical verification of the nondegeneracy conditio
necessary for a Hopf bifurcation to be supercritical is qu
involved for delay-differential equations, but it can be ca
ried out systematically using a center manifold reduction
described in some detail by Campbellet al. @14,15# and
Huang@16#. Following a similar analysis, one can establi
that our model does indeed undergo a supercritical Hopf
furcation@17#. The existence of a stable limit cycle can al
be confirmed numerically by simulating the full model equ
tions ~3.1! as shown in Fig. 5 where we plotA(t) for two
different values of the gainG. We find that the amplitude o
oscillations is an increasing function ofG except for largeG.
The period of oscillations is approximately constant, arou
1 s for the parameter valuesa53 s21, e550 s21, t
5300 ms,g56 s21, F r520e. These numerical results ar
consistent with the experimental data@3#.

IV. PIECEWISE-CONSTANT NEGATIVE FEEDBACK

In this section, we turn to the case of piecewise-const
negative feedback, which arises under edge-light conditi
@Fig. 2~b!# or can be implemented using clamping and ext
nally controlled feedback. Since the feedback is not
scribed by a differentiable function, it is no longer possib
to use techniques from Hopf bifurcation theory. Instead,
shall study the existence of periodic solutions along sim
lines to an der Heiden and Mackey@10#. To find an analyti-
cal solution we consider a linearized iris function as in E

FIG. 5. Pupil oscillations for smooth negative feedback witha
53 s21, e550 s21, t5300 ms, g56 s21, F r520e. Continuous
line G51.9, dashed lineG55.0. Pupil area is normalized with
respect toAmax.
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~2.4!. The system of equations~3.1! becomes

dV

dt
52@e1F„A~ t !…#V~ t !1KF„A~ t !…, ~4.1a!

dA

dt
52aA~ t !1

g

b
f „V~ t2t!…1aB* ~4.1b!

with

F~A!5H 0 if A<Ath

F0 if A.Ath
~4.2!

andAth,Amax. To simplify the analysis we shall assume th
the synaptic input induced by the retinal light flux is larg
F0@e,a. Under this condition one can takeV(t)'K for all
t such thatA(t)>Ath . We consider the onset of edge-lig
stimulation att5ts and for t,ts the variablesV(t), At(t),
with At(t)5A(t1t), are taken to be the steady-state so
tions for constant light fluxF0 . That is, V(t)5K, At(t)
5Aon for t<ts , where

Aon5B* 1
g f ~K !

ab
. ~4.3!

This corresponds to an experimental setup in which the l
source is moved from the center to the pupillary margin
the time t5ts . We shall assume thatAon,Ath , otherwise
Aon would be a stable fixed point of the system. Finally, w
linearize f in Eq. ~4.1b! by taking f (V)' f (K)2(K
2V) f 8(K), and define

Aoff5B* 1
g

ab
@ f ~K !2K f 8~K !#. ~4.4!

Let t i , integeri>1, denote thei th time that the pupil area
A(t) crosses the thresholdAth , either from below~odd i! or
from above~even i! and sett050. Introduce the intervals
I i5@ t i 21 ,t i), i>1. If tPI i for odd integeri thenA(t),Ath
and V(t) is an exponentially decreasing function of tim
whereas, iftPI i for even integeri thenA(t)>Ath andV(t)
5K ~sinceF0 is large!. Similarly, the time-shifted pupil area
At(t) is an increasing~decreasing! function of time for t
PI i and i an odd~even! integer. One can iteratively solv
Eq. ~4.1! for the pair„V(t),At(t)… by integrating with respec
to t over each intervalI i under the initial condition
„K,At(t i 21)… with At(t i 21) the final state of the solution
obtained over the previous intervalI i 21 . It is useful to intro-
duce the indexed set of functions

„Vi~u!,At
i ~u!…5„V~ t i 211u!,At~ t i 211u!…, ~4.5!

whereuP@0,D i), D i5t i2t i 21 , and i>1. Solving Eq.~4.1!
then gives forj >1

V2 j 11~u!5Ke2eu, ~4.6!

At
2 j 11~u!5Aoff1FAt

2 j 11~0!2Aoff1
a~Aoff2Aon!

a2e Ge2au

2
a~Aoff2Aon!

a2e
e2eu ~4.7!
t
,

-

t
t

and

V2 j~u!5K, ~4.8!

At
2 j~u!5Aon1@At

2 j~0!2Aon#e
2au. ~4.9!

The solutions are patched together using the condition

At
i ~D i !5At

i 11~0!. ~4.10!

We shall now prove that after an initial transient phase
system exhibits periodic behavior. We first note th
At

2 j (D2 j2t)5Ath for all j >1. Equation~4.10! then implies
that for all j >1

At
2 j 11~0![B5Aon1@Ath2Aon#e

2at. ~4.11!

ThusAt
2 j 11(0) is independent of the initial data so that E

~4.7! has the same initial condition, and hence the same
lution, for all j >1. In particularD2 j 115Dd for all j >1
where Dd is the solution to the equationAth5At

2 j 11(Dd

2t), which yields

Ath2Aoff5FB2Aoff1
a~Aoff2Aon!

a2e Ge2a~Dd2t!

2
a~Aoff2Aon!

a2e
e2e~Dd2t!. ~4.12!

It also follows thatAt
2 j 21(Dd) is independent ofj for all j

>2 so that from Eqs.~4.7! and ~4.10!

At
2 j~0![B̄5Aoff1FB2Aoff1

a~Aoff2Aon!

a2e Ge2aDd

2
a~Aoff2Aon!

a2e
e2eDd. ~4.13!

Equation~4.13! implies that Eq.~4.9! has the same initia
condition B̄, and hence the same solution, for allj >2. In
particular,D2 j5Dc for all j >2 with Dc the solution to the
equationAth5At

2 j (Dc2t), which can be solved explicitly to
give

Dc5
1

a
lnF B̄2Aon

Ath2Aon
G1t. ~4.14!

We conclude from the above analysis that Eq.~4.1! has a
periodic solution„V(t),At(t)… for all t.t25D11D2 and the
pupil cycling time is

T5Dc1Dd ~4.15!

with Dc and Dd determined by Eqs.~4.14! and ~4.12!, re-
spectively. The amplitude of the oscillation is given byB̄
2B. A numerical example of an oscillatory solution in th
case of largeF0 is shown in Fig. 6. A phase portrait of limi
cycle oscillations in the space„Ath ,A(t2t),A(t)… for vari-
ous values of the thresholdAth is plotted in Fig. 7.

The feedback system described by Eqs.~4.1! and ~4.2!
also exhibits oscillatory behavior for smaller values ofF0 ,
except that now the solution is obtained asymptotically in
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limit t→` rather than after a finite interval. In practice, th
convergence is very rapid, as can be seen in Fig. 8. We s
briefly indicate how to determine the resulting periodic so
tion. Following the previous analysis of the strong flux ca
Eqs. ~4.5!–~4.9!, we can decompose the periodic soluti
into a contracting phase and a dilating phase:

lim
j→`

„V2 j~u!,At
2 j~u!…5„Vc~u!,Ac~u!…, uP@0,Dc!,

~4.16!

lim
j→`

„V2 j 11~u!,At
2 j 11~u!…5„Vd~u!,Ad~u!…, uP@0,Dd#,

~4.17!

whereT5Dc1Dd is the period of oscillation. We also hav
the initial conditions

FIG. 6. Pupil oscillations for piecewise linear negative feedba
with Ath /Amax50.5 andts the time for onset of ‘‘edge-light’’ stimu-
lation. Herea53 s21, e510 s21, t5300 ms, g56 s21, and F r

520e. The variablesA andV are normalized with respect toAmax

andK, respectively.

FIG. 7. Phase plane for pupil cycling with the parameter pu
areaAth as a third dimension. Parameters are as in Fig. 6.
all
-
,

Vc~0!5U, Vd~0!5Ū, ~4.18!

Ac~0!5B̄, Ad~0!5B, ~4.19!

whereU andŪ are the minimum and maximum values of th
periodic solution forV(t). Similarly, B and B̄ are the mini-
mum and maximum values of the periodic solution f
At(t). The functionsVc,d(u) are found by solving Eqs
~4.1a! and ~4.18! to give

Vc~u!5Ue2 êu1
KF0

ê
@12e2 êu#, Vd~u!5Ūe2eu,

~4.20!

where ê5F01e. Similarly, the functionsAt
c,d(u) are ob-

tained by solving Eqs.~4.1b! and ~4.19! using the solutions
for Vc,d(u). The result is

Ac~u!5Aon1Lce2au1Gce2 êu,

Ad~u!5Aoff1Lde2au1Gde2eu, ~4.21!

where

Aon5B* 1 f 01
KF0f 1

ê
, Lc5B̄2Aon2Gc,

Gc5
a f 1

a2 ê FU2
KF0

ê G , ~4.22!

Aoff5B* 1 f 0 , Ld5B2Aoff2Gd, Gd5
a f 1

a2e
Ū.

~4.23!

In deriving these equations, we have linearizedf (V) in Eq.
~4.1b! about a mid-range pointV* ,K and setg f (V)/(ab)
' f 01 f 1V. Finally, the unknown amplitudesU, Ū, B, andB̄
together with the periodsDc,d are determined self-

k

il

FIG. 8. Pupil oscillations for piecewise linear negative feedba
for small light flux. All parameter values are as in Fig. 6 except t
Ath /Amax50.85 andF r52e.
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consistently from the following conditions@obtained by
matching up the contracting and dilating solutions in E
~4.20! and ~4.21!#:

Vd~Dd!5Vc~0!, Vc~Dc!5Vd~0!,

Ac~Dc!5Ad~0!, Ad~Dd!5Ac~0!, ~4.24!

Ac~Dc2t!5Ath , Ad~Dd2t!5Ath . ~4.25!

V. MIXED FEEDBACK

It is instructive to make more explicit the connection b
tween Eqs.~4.1! and ~4.2! and the class of piecewise
constant delayed-feedback models considered by an
Heiden and Mackey@10#. Let a(t)5A(t)2Aon and ath
5Ath2Aon and assume thate is sufficiently large so that we
can takeV(t)5K whenevera(t).ath and V(t)50 when-
ever a(t)<ath . Equations~4.1! and ~4.2! then reduce to a
single delay equation for the pupil area:

da

dt
52aa~ t !1h„a~ t2t!…, ~5.1!

where

h~a!5H a~Aoff2Aon! if a<ath

0 if a.ath
. ~5.2!

Equations~5.1! and ~5.2! correspond to the type of negativ
feedback model analyzed in Ref.@10# and is found in the
original Longtin-Milton model.

For many physiological control systems an equation
the form ~5.1! arises withh@a(t2t)# given by a humped
function ofa(t2t) for which maximal input occurs at som
intermediate value ofa(t2t). In other words, the contro
system displays both positive and negative feedback cha
teristics. Analytical and numerical studies have demonstra
that mixed feedback systems can exhibit a complex var
of periodic and aperiodic~chaotic! dynamics@10#. Of par-
ticular interest here concerns the experimental investiga
of the dynamical effects of mixed feedback in the pupil lig
reflex @18,19#. This was carried out under clamped cond
tions with piecewise-constant feedback of the form

F~A!5H 0 for A<A1 andA>A2

F0 for A1,A,A2 .
~5.3!

The lower thresholdA1 and the higher thresholdA2 were
externally controlled. Equation~5.2! then becomes

h~a!5H a~Aoff2Aon! for a1,a,a2

0 for a<a1 anda>a2.
~5.4!

Interestingly, a discrepancy between the prediction of
original first-order Longtin-Milton model and the experime
tally observed oscillations of the pupil under mixed feedba
was found; the model predicted too many changes in p
area per cycle in a certain parameter regime@see Fig. 3~e! of
Ref. @19# and Fig. 7~c! of Ref. @18##. This raises the issue o
whether or not the second-order model can account for s
a discrepancy, and hence give an improvement upon
.
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original model with respect to closed-loop as well as op
loop response. It turns out that this is indeed the case, a
illustrated in Fig. 9. As the two thresholdsA1 and A2 are
varied, the system undergoes changes in the numbe
pulses of light received by the pupil, which is very sugge
tive of the data presented in the cited figures. Such beha
is also found to be quite robust. A more detailed investig
tion of mixed feedback will be presented elsewhere@20#.

VI. DISCUSSION

In this paper, we have presented a mathematical mode
the pupil light reflex in terms of a system of nonlinear dela
differential equations. This model incorporates experim
tally determined physiological parameters that underlie
complex dynamical behavior of the pupil light reflex, an
nonlinear techniques such as Hopf bifurcation theory h
been used to study the onset of this behavior. The mo
extends the Longtin-Milton model@7,8# by including a phe-
nomenological representation of the dynamics of the ret
system in the form of a leaky integrator shunting equati
The resulting flux-dependent modulation of the effecti
time constant of the system~due to shunting!, combined with
the various nonlinearities of the system, accounts for a w
range of observed features:~i! the asymmetry between pup

FIG. 9. Pupil oscillations for mixed feedback and vario
choices of thresholdsA1 and A2 . Here e56 s21, a53 s21, g
56 s21, t5411 ms, F r520e. ~a! A1521.5 mm2, A2

524.75 mm2, ~b! A1521 mm2, A2522 mm2, ~c! A1518 mm2,
A2520 mm2.
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contraction and dilation~ii ! the frequency-dependent shift i
the average pupil response when a constant light stimulu
modulated by a sinusoidal input,~iii ! the nonlinear summa
tion of signals from left and right eyes~binocular versus
monocular sinusoidal response!, and ~iv! spontaneous oscil
lations under conditions of high gain negative feedback.
ture work will investigate the effects of noise arising fro
the neural components of the reflex arc, as well as de
concerning photoreceptor dynamics. In particular, the imp
tant role that photoreceptors play in light adaptation will
investigated and contrasted with possible neural mechan
for adaptation. The latter can be modeled as a stocha
i-

,

l.

oc

d

is

-

ils
r-

s
tic

process, with neuronal units becoming desynchronized
to differences in their firing patterns after an initial synchr
nized burst caused by illumination onset.

In conclusion, the pupil light reflex is an important par
digm for nonlinear feedback control systems. Understand
the behavior of such systems involves important mathem
cal questions concerning the properties of differential eq
tions with delays and noise, and could benefit the clinic
interested in developing diagnostic tests for detecting neu
logical disorders. It is also hoped that the work will ha
applications in other areas such as respiratory and car
control.
ath
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